DII COE Alerts Services

Technical Exchange Meeting

18 & 19 November 1999

1. An Alerts Technical Exchange Meeting (TEM) was held at the Mitre facility in Reston, VA on 18 and 19 November. The purpose of this meeting was to address certain technical issues surrounding the Alerts Services software previously identified, and to further scope it’s capabilities as a COE product.

2. The attendees of the meeting were: Evelyn Labbate, Ileana Reisch, Jim McCrory, Charlie Heazel, Bruce Long, Steve Dillon, Jean Wyllie, Steve Nickerson, Lt.Col John Merrick, Kim Love

3. From previous TWG discussions and DISA guidance, it is assumed that Alerts Services is moving to a single baseline product, namely Java. Currently, the Solaris and HP Alerts Server and SDK segments are written in ‘C’, and the NT segments are written in Java. The transition to single source, and a schedule, is still to be determined.

4. Mr. Dillon, Navy representative, stated that the Navy’s requirements are very similar to those described and submitted by the Coast Guard. He said that Alerts would be required for the HPUX 11/DII COE 4.2 platform.

5. Mr. Nickerson, ASAS Chief Architect, reported that a test driver suite was written for the Alerts ‘C’ server. A description of the problems and issues, along with the segmented test driver suite, was given to Ms. Labbate.

6. Mr. Long, TBMCS Chief Architect, stated that the Alerts Services software could be utilized within their system(s) without major technical obstacles.

7. Ms. Reisch, Mitre, said that the API Reference Manual for the Alerts 2.0.0.0 (Java) version does not allow for intuitive understanding of how to implement the APIs. Since the Alerts product is in fact a toolkit, and not an application, it is imperative to have comprehensive documentation (i.e. Programmers/Integrators Reference Manual) with example designs and implementations. Detailed analysis of the NT APIRM was not possible due to the poor, sometimes incomprehensible, descriptions of the individual API. However, all agreed that the management of the connection to the server should be done by the client side APIs provided with the Alerts Toolkit and should not be the responsibility of the client application developer .

8. Mr. Chuck Heazel of Mitre did unofficial performance testing on the Java Alerts product using a Pentium laptop. The Alerts server handled 30-45 alerts per second.

9. Alerts questionnaires completed by Coast Guard, Army and Air Force Programs were discussed.

10. There was an in-depth discussion regarding the requirement for the acknowledgement of alerts. It was decided to use the term ‘acknowledge’ to mean that an ack (message) was physically sent back to the originator of an alert, whereas the phrase ‘clear an alert’ was a client-side GUI/queue responsibility.

11. There was an in-depth discussion regarding the requirement to cancel an alert, and the scenarios of one/any/all recipients of a canceled alert.

12. Two issues will be brought forth to the AOG: requirements for logging and address services.

13. Mr. Heazel and Ms. Labbate will draft a white paper that proposes a technical solution and roadmap before the next Alerts TWG, tentatively scheduled for the week of 17 January 2000.

14. Following are excerpts taken from a Meeting Report, submitted by Mr. Heazel, that summarize the technical issues addressed, and requirements gleened from these discussions:

a. Summary:

The meeting consisted of a discussion of the alerts needs and implementations among the represented programs. Program representatives presented their program’s perspective. These perspectives provided the framework for discussing alerts services and formulating a set of capabilities that would be sufficient to meet the needs of every program. The meeting ended with an common feeling that progress had been made and that a common Alerts service was feasible. The next step in this effort is the documentation of the information gathered through this meeting into a white paper. A draft of this document is to be presented to the January Alerts TWG.

The next TWG meeting is tentatively scheduled for January 19-20, 2000.

b. Summary of Technical Issues:

Provide support for the cancellation of a pending alert.

Alerts can be canceled by anyone if no restrictions were specified.

Alerts can only be canceled by the initiator if so indicated when the alert was generated.

Upon receiving an alert cancellation message, the server will delete the alert from the queue and forward the cancellation to all clients registered to receive cancellations and the canceled alert.

Provide support for immortal alerts.

Some alerts must persist until they are explicitly canceled. A ship entering shallow water is one such example. The Alerts service must support these alerts.

Put connection management into the Alerts client library.

Mission applications should not have to manage the connection between the Alerts client and server. The number of interfaces that the mission application must invoke should be as small as possible.

Provide controls such that if desired, an alert can only be canceled by its initiator

Some alerts are the result of a condition that is monitored by a specific application. This application and only this application should control the existence of these alerts.

Support Alert Acknowledgement.

Initiators may need to know who or how many clients have received the alert. Alert initiators should be able to select one of three behaviors, no acks needed, any one ack needed, or acks from all recipients needed. An outstanding issue is how to handle the third case. One proposal is that each ack be labeled with the total number of recipients allowing the initiator to keep track of who has and has not responded. An Ack scenario is the issuing of a scramble alert. The issuer of the order needs to know which squadrons have received and are acting on the scramble.

Alerts Logging will be provided.

Logging will be a configurable service providing support up to and including persistent logging of all alerts, acknowledgement and cancellations and the distribution of each.

Remote management.

The Alerts management interfaces should be enabled for invocation from a remote location. (This capability is already provided but not captured)

c. Scope Definition:

The Alerts product is a developers tool-kit. It provides a message routing and distribution service.

Alerts is both lightweight and scaleable. Alerts will never be an out-of-the-box application.

Acknowledge/Cancel

An extended discussion took place on the subject of what acknowledge and cancel means in terms of behaviors of the Alerts product.

· Cancellation – Most alerts will be canceled by the expiration of their duration timer (lifetime). Some alerts will be explicitly canceled. The mission application needs to distinguish between those that can be canceled by anyone and those that can only be canceled by the initiator (cases were presented for both scenarios). The behavior for a cancel is as follows – If cancel is issued, delete the alert from the server and inform all mission applications that received that alert of the cancellation.

· Acknowledge – The term acknowledge is used in to mean two different actions when discussing alerts. Local acknowledges are used by the client to control the display of alerts. This type of acknowledge is under the control of the mission application and is not part or the Alerts segment. Remote acknowledgement addresses coordination between alert initiators and recipients. Alerts can be generated under three acknowledgement scenarios – no ack required, any ack, all recipients.

Addressing

Five types of addresses were identified, topic, e-mail address, IP address, profile and address list.

· Topic addresses use the searchable alerts topics common to publish/subscribe systems. This is the technique currently supported.

· E-mail addresses are used where the delivery mechanism for an alert is electronic mail. There is consensus that directory services are not part of Alerts. Alternatives for supporting e-mail distribution within the Alerts client API are being investigated. This is a requirement for TBMCS.

· IP Addresses are used by the Coast Guard and Navy where the IP addresses of some devices are standardized. This will require some modifications to the Alerts server. It should be noted that the server already knows the IP address of all clients currently registered.

· Profile addressing distributes alerts based on the role that the mission apps are playing in the system. Profile distribution can be supported by the current design by having the clients automatically register for the appropriate topics when they change profiles and to use profile names as topics.

· Address lists are collections of the five address types. Logic will have to be added to the current product to parse and distribute an alert based on these lists.

Profile routing

Profile based alerts can be supported by adding some intelligence to the client library. Upon logging in or changing profiles, a common module will register the user for all alerts that users under that profile should see. The profile manager has hooks to support execution of this module. While no formal consensus was reached, there was a strong argument that this logic should not be part of the Alerts segment due to the impact it has on the management of the final system. TBMCS has a requirement to support a secondary delivery mechanism if no one is logged in under a specified profile. In their case the secondary mechanism is e-mail.

d. API:

· Alerts will support the old C interfaces. This will be accomplished by providing C library functions that access the Java server.

· The current API set places too great a responsibility for managing the client/server connection on the mission application. In an ideal world two functions would be provided; send() and get().

· Polling is not an acceptable way to receive alerts, a callback mechanism must be provided.

· A programmers reference manual is needed. The APIRM is not sufficient for developers to understand the Alerts service.

e. Miscellaneous

· Mission applications are being integrated into more than one system. Alerts must allow a mission app to be installed in systems with different alerts distribution logic without requiring changes to the mission app code. For example, the API must not have different parameters for publish/subscribe and push alerts.

· Reliability and performance needs to be improved. One possibly is to use the Alerts web site and distribution list to collect trouble reports.

· Alerts must support logging up to and including the logging of all alerts and whom they were sent to. This is important for the Coast Guard since this data is often used in court. For other users, this capability needs to be configurable.

· Clients can register to receive alerts, acknowledgements and cancellations.

· The alerts body must hold 1Kbytes of data

· Alert types and profiles can be created at any time.

· Web users should be able to receive alerts.

· Classification levels and priorities can change based on where the mission app is deployed. Alert classification level and priority should be a configurable set of values.

